CCARD Ltd is an independent consultancy offering CAE hardware and software installation and customisation services, specialising in CATIA and I-DEAS systems.

CCARD also specialises in Electronic Data Interchange (EDI), and supplies, installs and supports OFTP/Odette based ISDN or TCP/IP solutions.

In order to continue to provide its customers with the best products and support, CCARD has negotiated exclusive access to a CATIA V5 Introduction User Guide, of unique quality and effectiveness, which is ideal as a cost-effective self-study tutorial.

CCARD can be contacted either by telephone on 024-76-226888 by emailing info@ccard.co.uk or via our website at www.ccard.co.uk

This extract from the CATIA V5 Introduction User Guide

- Includes the contents and index pages, together with the full initial worked example, overviews and summary of all examples, of the complete 134 page spirally bound manual.

- Provides an illustration of the style and content of this and other CATIA V5 User Guides compiled and published by The CAD/CAM Partnership - the leading independent CATIA specialist in the UK.

- Assumes the availability of a CATIA V5 workstation with a configuration license (such as 'MD2') and also familiarity with the CATIA V5 interface, such as use of the mouse buttons and command icons, in order to follow the initial worked example provided as an isolated sample.

® CATIA is a registered trademark of Dassault Systèmes
Table of Contents

Overview
- Welcome to... ... i
- Table of Contents .. ii

1. Getting Started
- Starting CATIA for the first time 1-1
- The Mouse Buttons ... 1-1
- Setting Useful Options .. 1-2
- File Locations ... 1-3
- The Workbench Toolbars .. 1-4
- Help with the Command Icons .. 1-6

2. Overview Example
- Engine Mechanism ... 2-1
 - 1. Conrod (Part) .. 2-2
 - 2. Block (Part) .. 2-5
 - 3. Piston (Part) .. 2-6
 - 4. Crankshaft (Part) .. 2-8
 - 5. Engine Assembly (Product) ... 2-10
 - 6. Drawing Generation .. 2-13
 - 7. Simple Modifications ... 2-18
- Questions and Answers ... 2-20

3. Sketcher Profiles
- Plate Profile ... 3-1
- Questions and Answers ... 3-6
- Handbrake Profiles ... 3-7
Table of Contents

4. Prismatic Parts

<table>
<thead>
<tr>
<th>Part</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Planar Support Bracket</td>
<td>4-1</td>
</tr>
<tr>
<td>2. Suspension Bracket</td>
<td>4-7</td>
</tr>
<tr>
<td>3. Handbrake Plate</td>
<td>4-15</td>
</tr>
<tr>
<td>Questions and Answers</td>
<td>4-21</td>
</tr>
<tr>
<td>4. Patterns of Objects</td>
<td>4-24</td>
</tr>
<tr>
<td>5. Sports Car Wheel</td>
<td>4-29</td>
</tr>
</tbody>
</table>

5. Draughting and Plotting

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draughting Basics</td>
<td>5-1</td>
</tr>
<tr>
<td>1. Sheet Frame and Title Block</td>
<td>5-2</td>
</tr>
<tr>
<td>2. Creating a Section View</td>
<td>5-7</td>
</tr>
<tr>
<td>3. Draw Details</td>
<td>5-8</td>
</tr>
<tr>
<td>Questions and Answers</td>
<td>5-10</td>
</tr>
<tr>
<td>4. Plotting</td>
<td>5-13</td>
</tr>
</tbody>
</table>

6. External References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview</td>
<td>6-1</td>
</tr>
<tr>
<td>1. Designing ‘in Context’</td>
<td>6-2</td>
</tr>
<tr>
<td>2. Inserting Parts in a Part</td>
<td>6-8</td>
</tr>
<tr>
<td>3. Duplicating Parts within a Product</td>
<td>6-12</td>
</tr>
<tr>
<td>4. Modifying a Referenced Part</td>
<td>6-15</td>
</tr>
<tr>
<td>Questions and Answers</td>
<td>6-16</td>
</tr>
</tbody>
</table>
Table of Contents

7. Miscellaneous

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. On-line Help</td>
<td>7-2</td>
</tr>
<tr>
<td>2. Exchanging V5 Documents</td>
<td>7-4</td>
</tr>
<tr>
<td>3. Using a V4 Model as a V5 Component</td>
<td>7-5</td>
</tr>
<tr>
<td>4. Migrating Multiple V4 Models</td>
<td>7-6</td>
</tr>
<tr>
<td>5. Messages Explained</td>
<td>7-8</td>
</tr>
<tr>
<td>6. Questions and Answers</td>
<td>7-10</td>
</tr>
<tr>
<td>7. Just Testing</td>
<td>7-14</td>
</tr>
<tr>
<td>8. The CATIA V5 Advanced User Guide</td>
<td>7-16</td>
</tr>
<tr>
<td>9. The CATIA V5 Digital Mockup User Guide</td>
<td>7-17</td>
</tr>
<tr>
<td>10. The CATIA V5 Administration User Guide</td>
<td>7-18</td>
</tr>
</tbody>
</table>

8. Summary

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Basic Points to Remember</td>
<td>8-1</td>
</tr>
<tr>
<td>2. A Review of Examples</td>
<td>8-2</td>
</tr>
<tr>
<td>3. Modified Options Settings</td>
<td>8-4</td>
</tr>
</tbody>
</table>

Index .. Index-1
Objective: To introduce the Part Design, Assembly Design and Drafting modules.

To model 3 simplified engine components, plus part of the engine block, so that the components can then be intelligently assembled, and animated. A drawing will be produced with views of the Crankshaft and the assembly, and the Crankshaft component subsequently modified to illustrate how the assembly model and the drawing reflect these changes.

Approach: A new Part document (file) will be created for each component.

The defining profiles will be created and dimensionally/geometrically constrained, typically in the yz 2D plane.

The assembly is a Product document which will reference the Part documents.

Comments: In this example, each component is created independently, i.e. no reference is made to geometry in the other Part documents. Changes to one Part document will therefore not affect the other Parts. (It is possible for changes in one Part to automatically be reflected in all related Parts).
1. Conrod (Part)

1. Activate Part Design
2. Choose working 2D plane
3. Create top hole

1. Start CATIA

If the Welcome to CATIA V5 window is displayed, then...
 Use MB1 to activate Do not show this dialog at start up
 Select Close to remove this window

Close the proposed Assembly Design workbench window...
Select File + Close to close the Product1 window

Select Start + Part Design to activate the Part Design workbench

A specification tree displays:
 Part1 - the default new Part document name
 3 datum planes - which are also displayed as geometry
 An empty Body in which Part geometry can be created

2. Select Sketcher: and then the yz reference plane (or vice-versa)

 Note: The yz reference plane can be selected as geometry, or via the specification tree
 The Sketch plane, by default, rotates to display normal to the screen, as shown

3. Double-click (so as to use more than once) Circle:

 First create the top hole for the gudgeon pin...
 Select the origin point (a temporary blue circular icon must be displayed) as the centre
 Indicate (using MB1) any point at the approximate location of the circle circumference
1. Conrod (Part) (continued)

4. Create other circles

 Similarly, create a concentric circle by first selecting the existing centre point
 (Hold MB2 and click MB1, and then move the mouse vertically to zoom out as required)

 Create a third circle by first selecting a centre point vertically below the origin
 (a temporary blue vertical line must be displayed below the V axis)

 Note: The 'Coincidence' of this lower centre point with an extension of the vertical axis
 is automatically created as a geometrical constraint (the green circle symbol),
 but only if the Geometrical Constraints icon is active (the default setting)

 Create another concentric circle by first selecting the second centre point

5. Double-click Corner:

 Select each outer circle and indicate a point to approximately define the left fillet curve
 Similarly define the right-hand fillet curve

 Note: Should the radii Constraint values be displayed with a ± tolerance symbol, then
 select the Tools + Options... + Parameters and Measure Parameters Tolerance tab, and deactivate Default tolerance (for future Constraints)

6. Double-click a fillet curve dimension value

 Enter the required value (140mm) in the Constraint Definition window

 Similarly correct the other fillet curve dimension value

 NOTE: As geometry is fully constrained it turns from white to green. White geometry
 therefore indicates that additional geometrical or dimensional constraints are
 required to completely specify the profile...
Overview Example

1. Conrod (Part) (continued)

7. Constrain the profile

8. Correct the dimensions

9. Create the solid Pad

7. Double-click Constraint:

Select each circular curve and indicate to create radius and hole diameter dimensions

Note: These dimensional constraint values will be arbitrary, for example as shown

Select the horizontal axis and the lower centre point to create the vertical dimension

8. Double-click each dimension value, and enter the required value (as shown)

(Top: radius 25mm and Ø25mm, vertical offset 150mm, lower: radius 40mm and Ø50mm)

Select Exit: to leave the Sketcher and to enable 3D geometry creation...

9. Select Pad: and in the Pad Definition window...

Specify a Length of 16mm (in the positive X direction)

To define the material of the part...

Select the Part and then select Apply Material: (or vice versa)

Select Metal + Steel from the material Library window and select OK

Use MB3 to select from the specification tree

Select Properties

Select the Mass tab to review the Mass Properties

Select the Product tab, and change the Part Number to Conrod

Select OK

10. Select File + Save As... to display the Save As window

Save the Part as Conrod in the default location (e.g. E:\Catdata\My_work)

Select File + Close to close the Conrod document
Chapter 2

2. Block (Part)

1. Create block profile

2. Create cylinder shaft

3. Create crankshaft hole

Part of an engine block will be required to support the intelligent assembly of the engine parts...

1. Select **Start + Sketcher** and select the **yz reference plane**

 Note: Starting the Sketcher workbench creates a new Part document

 Select Profile: and create orthogonal line segments, ending at the first point

 Double-click **Constraint:** to create dimensional constraints for the profile

 Double-click each dimension value, and enter the correct/required value (as shown)

2. Select **Exit:** and then select **Pad:**

 Create a prism with a (-X direction) depth of 70mm

 For a new Sketch (you can select the command icon and then a plane, or vice-versa)...

 Select **Sketcher:** and then the **xy plane** (or an existing face parallel to the xy plane)

 Select **Circle:** to define a Ø100mm circle centred at the origin (and then **Exit:**)

 Select **Pocket:** with Limit **Type** set as **Up to last** (Reverse Direction if required)

3. Create a new Sketch containing a Ø50mm circle centred at the origin on the **zx plane**

 Use **Pocket:** with Limit **Type** set as **Up to last** (Reverse Direction if required)

4. **Optionally, to define the material of the part...**

 Select the Part and then select **Apply Material:** (or vice-versa)

 Select **Metal + Aluminium** from the Library window

 Use **MB3** to select **Part1** via the specification tree, and select **Properties**

 Change the Product **Part Number** to **Block**

 Select **OK**

 Select **File + Save As...** to save the Part as **Block**

 Select **File + Close** to close the Block document
3. Piston (Part)

1. dimension cylinder profile with axis

2. Create 360º solid of revolution

1. Select New: and Part and then select OK
 (This is yet another way of starting a new Part)

 Select the yz reference plane and then Sketcher: (or vice-versa)

 Select Profile: and create line segments with endpoints inline with the vertical axis

 Note: To end the definition of a Profile (which does not finish at its start point),
 reselect (to deactivate) the Profile: command icon.

 Select Axis: and define a line joining the endpoints
 (Press MB1 to deselect the line)

 Double-click Constraint: and create the 3 distance dimensions from the axis
 Double-click each dimension value, and enter the required value (as shown)
 (Vertical offsets 50mm and 35mm, and horizontal offset 50mm)

 Note: The Axis line is not fixed (it could be dragged away from the vertical axis)

2. To create a solid of revolution from the Sketch profile...

 Select (Exit: and) Shaft:

 Note: If the Sketch did not contain an Axis type line, then it would be necessary to
 select an axis of revolution, for example the vertical (V) axis.

 Verify that the proposed First angle limit is 360º, and select OK
3. **Piston (Part)** (continued)

3. Define shell thickness operation

4. Create gudgeon pin hole and 2mm chamfer

3. Select **Shell:**
 - Select the bottom face (for removal)
 - Enter an **Inside thickness** of 10mm

4. Select the **yz** reference plane and then **Sketcher:** (or vice-versa)
 - Select **Circle Using Coordinates:**
 - Define a 12.5mm radius circle at coordinates 0,0

 Note: This circle centre point is fixed - but independent of the origin point. The location of the circle centre can be moved by modifying the offset dimensions.

 Although the circle has been created efficiently, the circle is unlikely to be moved from the origin in this example, and therefore would have been more appropriately created as a **Circle:** using the origin as its centre point.

 Select **Exit:** and then select **Pocket:**
 - Select **More>>** to set both Limit Types to Up to last
 - Select **OK**

 Select **Chamfer:** and the top face or edge (or vice versa)
 - Define a 2mm chamfer at 45°

5. Use **MB3** and **Properties** to change the Product **Part Number** to **Piston**

 Select **File + Save As...** to save the Part as **Piston**
 - Select **File + Close** to close the Piston document
Overview Example

4. Crankshaft (Part)

1. Define the 35mm oblong profile

2. Create Pad and define an R25mm circle

1. Select **Start + Sketcher** and then select the **yz reference plane** (This is the most efficient way to start a Sketch for a new Part)

 NOTE: Rather than literally sketch geometry, and then return to constrain and correct the arbitrary dimension values, it is possible to **enter specific values** via the **Sketch tools** toolbar menu (which is the one including the Grid icon). (To ensure that all of the numerical value entry fields of this menu are visible, then it should be dragged into the main window to create a separate window)

 Change the ‘type of profile’ (i.e. from | | | or | | | etc.) to **Oblong:**

 First select the origin **point**
 Enter a length **L:** of **35mm** and then select a **point** horizontally to the right
 Enter a radius **R:** of **35mm**

2. Select **Exit:** and then **Pad:**
 Enter a **Length** (i.e. a ‘thickness’, in the -X direction) of **16mm**

 Select Sketcher: and then the front **face** of the pad (or vice-versa)

 Select Circle:
 Select a centre **point** (anywhere!) and enter a radius **R:** of **25mm**
4. **Crankshaft (Part) (continued)**

4. Create concentric R25 x 20mm cylinder

5. Create an R25 x 60mm cylinder

4. The circular profile can be defined to be always concentric with an edge of the Pad...

 With the circle still highlighted as the current element...

 Select **Constraint:**

 Select the semi-circular right-hand edge of the Pad

 Select the proposed dimension value, using MB3, to replace it with a **Concentricity**

 Select **Exit:** select Pad: , and then enter a **Length** (thickness) of 20mm

5. **NOTE:** Whenever a working plane for a Sketch is defined, it may be rotated to be parallel to the screen so as to be viewed orthogonally. On leaving the Sketch, the previous (typically isometric) viewpoint will be reinstated. This automatic presentation of an orthogonal viewpoint does not help to clarify the location of the Sketch, and is therefore optional...

 Select **Tools + Options… + Mechanical Design + Sketcher,** and in the **Sketcher** tab...

 Deactivate Sketch Plane □ Position sketch plane parallel to screen

 Select OK to close the Options window

 (Normal View: and Isometric View: can obtain the same effect when required)

 Select **Sketcher:** and then the **rear face** of the 16mm pad (or vice-versa)

 Create a 25mm radius circle centred at the origin

 Select **Exit:** select Pad: , and then enter a **Length** (thickness) of 60mm

6. Use MB3 and Properties to change the Product **Part Number** to **Crank**

 Select **File + Save As…** to save the Part as **Crankshaft**

 Select **File + Close** to close the Crankshaft document
5. Engine Assembly (Product)

1. Assemble existing components

2. The display mode can be changed

1. Select Start + Assembly Design to create a new Product (assembly) Document

Select Product1 using MB3 and select Properties
Select the Product tab and change the Part Number to Engineassy
To assemble the required components...
Select Existing Component: (to be inserted into the current Engineassy Product...)

Note: Alternatively, Existing Component with Positioning: will additionally both place and constrain a component. However, the more flexible approach is to create the relationships between components later, particularly in this example, where the position/orientation of the components are interrelated...

Ctrl-select the Piston, Crankshaft, Conrod and Block Part documents
Select Open

2. Note that at any time the Display Mode can be changed...

Select the current setting, for example, Shading with Edges: and...
Select Shading (SHD): for shading without edges
Similarly change the Display Mode to Shading with Edges and Hidden edges:

Note: To obtain the Hidden Line Removal type display used to illustrate this manual:
Select Customize View Parameters: for the Custom View Modes window
Activate Dynamic hidden line removal and then select OK

Select Shading with Edges: or, Shading with Edges without Smooth Edges:

Note: Customize View Parameters: also provides an option for another similar display, but with Half visible smooth edges, for a less prominent display of internal 'edges' at tangential boundaries

Caution: Engineassy must remain as the 'current object' in the Specification Tree, otherwise, if instead a Part is current, then the Constraints Toolbar will be dimmed/unavailable...
5. **Engine Assembly (Product)** *(continued)*

3. **Fix Block and link Piston/Conrod**

3. Select **Fix Component:** and then the **Block** Part (or vice-versa)

 Note: By default the component will be fixed **absolutely** - as indicated by a lock symbol on the fix icon in the specification tree.

 (MB3 + Properties and the **Constraint** tab and deactivating **Fix in space** would instead define the Fix to be only relative to other referenced components)

 Select **Coincidence Constraint:** (the geometry may have to be rotated first...)

 Select the **Piston** hole (horizontal proposed **axis**) and the **Conrod** top hole (proposed **axis**)

 NOTE: The Piston (**first selected Part**) would have **moved** to share axis with the Conrod (**second selected Part**) if required unless the first Part had been previously fixed

4. **Move Piston/Conrod**

4. Select **Manipulation:** *(or, use the Compass and Shift to drag both components)*

 Select **Drag along Z axis** and set **With respect to constraints**

 Select either the Conrod or Piston Part, and drag the pair vertically upwards

5. **Link Parts and rotate**

5. Select **Coincidence Constraint:**

 Select the **Piston** (proposed axis) and then the **Block** shaft (proposed axis)

 Note: The Crankshaft, Conrod and Piston must be rotated together through 90° clockwise before the Crankshaft can be linked to the Block...

 Select **Contact Constraint:**

 Select the **Conrod** (rear face) and then the **Crankshaft** (front face), or vice-versa

 Select **Manipulation:**

 Select **Drag around Z axis** and set **With respect to constraints**

 Select the **Crankshaft** and drag so as to rotate the 60mm cylinder towards the hole

 Note that this is very approximate so that part of the hole remains for selection!
6. **Double-click Coincidence Constraint:**

 To align the Crankshaft with the Block...
 Select the **Crankshaft** (60mm Cylinder) and then the **Block** (horizontal hole)

7. **To connect the Conrod and Crankshaft:**
 Select the **Crankshaft** (20mm Cylinder) and then the **Conrod** (lower hole)

8. **The Conrod/Crankshaft are not correctly centred with respect to the Piston...**
 Select **Offset Constraint:**
 Select the **Conrod** (face) and then the **Block** (outer face)
 Enter an **Offset** of 62mm

9. Select **File + Save As...** (or **Save**), or select the equivalent **Save:** command icon

 If a **Save Management** window is presented, then select **Save As**... for the **Engine_assy**

 A **Save As** window is always presented the first time a document is saved...
 Select **OK** to confirm that the Product document is to be saved as **Engine_assy**

 Optionally temporarily change the Display Mode to **Shading with Material:**

 Select **Manipulation:**
 Select **Drag around any axis** and activate **With respect to constraints**
 Select (the proposed axis of) the Crankshaft (60mm Cylinder)
 Select the Crankshaft and drag so as animate the piston mechanism

 Select **File + Close** to close (without saving) the **Engine_assy** window
Chapter 2

6. Drawing Generation

1. New sheet with front view

2. Define plan view

1. **Open**: the Crankshaft Part

 - Select **Start + Drafting** (+ **Empty sheet**) and **Modify**...
 - Verify that the **Standard** is **ISO** and set the **Format** to **A2 ISO** (594x420mm)
 - Also verify that **Orientation** is **Landscape** and **Scale of sheets** is **1**
 (Select **OK** in the New Drawing window and **OK** in the Create New Drawing window)

 To determine the Projection Method, select **Sheet.1** using **MB3 + Properties**
 - Verify that the **Create projection views using third angle standard** option is current
 - Select **OK**

 Deactivate the **Sketcher grid**: and **Snap to point**: options

 - Select **Window + Tile Horizontally** to display both Crankshaft.CATPart and Drawing1 windows - (the currently active window always displays above the other window)

 - Select **Tools + Options... + Mechanical Design + Drafting** and the **Layout** tab
 - Deactivate View Creation □ Scaling factor (the display of the View Scale)
 - Select the View tab
 - Verify that the □ **Generate axis** and □ **Generate center lines** options are active
 - Select **OK**

 - Select **Front View**: and then the front face of the **Crankshaft**
 - Optionally select the view frame (using MB1) and drag to a more appropriate location
 - Select the proposed view geometry to generate the Front view

2. **Select Projection View**: (available in same the group of icons as Front View)
 - Position the cursor **above** the Front View
 - Select the proposed view to generate the Top view

 Note that the **Front view is still the current view** (with the red frame)...
6. Drawing Generation (continued)

3. Define side view

4. Define isometric view

3. Select Projection View:
 Position the cursor to the right of the Front View
 Select the proposed view to generate the Right view

4. Note: An isometric view is created with the same orientation as the selected Part, i.e. a standard isometric is not necessarily created. If a standard isometric view is required, then the Part orientation must first be defined by selecting Isometric View: (from within the Part window/workbench)

Select Isometric View: (from within the Drawing window/workbench)
Select any face of the Crankshaft Part
Optionally modify the default isometric orientation via the compass
Select the proposed view (or the centre of the compass) to generate the Isometric view

Select the Drawing window maximise icon: to display only the Drawing window
Select and drag the Isometric view frame to relocate the Isometric view as required

Select (using MB3) the frame of the Front View and select Properties
Within the View tab, activate the display of Dressup ■ Hidden Lines
Select OK
(The circle representing the rear cylinder is displayed dashed)

Select Tools + Options... + Mechanical Design + Drafting and the General tab
Deactivate View axis □ Display in the current view
(... which may only become effective when you next change the current view)
5. Automatically generated dimensions

The Generated Dimensions Analysis window displays the number of constraints found (e.g. 7), and how many dimensions were created (e.g. 6) from these constraints. Select OK

6. Redefine the dimensions in the front view

6. In the Top view:
Select the 60mm dimension (value) and then drag the dimension line to the left
Ctrl-select the 16 and 20mm dimensions
Use MB3 to select Line-Up and select the 60mm dimension as the reference
Verify that Offset to reference is 0 (in the Line Up window) and select OK

In the Front view:
Select and Delete the vertical 35mm dimension

To be able to indicate the initial location of a dimension as it is created...
Select Tools + Options... + Mechanical Design + Drafting and the Dimension tab
Activate the Dimension following the mouse (ctrl toggles) and select OK

Note that small symbols will indicate the geometry (line, arc or circle) being detected...
Select Dimension: and select the left-hand semicircle
Indicate a point to locate the radius dimension
Change the Dimension Line format from (via the Dimension Properties toolbar - displayed at the top of the screen)
Select Dimension: to create the 35mm dimension between the 2 vertical centrelines
Select and relocate both of the 25mm radius dimensions and their values, and...
Change their Dimension Line format to
6. Drawing Generation (continued)

7. Modify view texts, and switch off frames

7. Ctrl-select the 4 View title texts
 Set the Font Size to 5 mm and select Bold: \textbf{B} and Underline: \textit{S}

 To switch off the boundary frames...
 Ctrl-select the 4 View frames (or the 4 Views listed under Sheet.1)
 Use MB3 to select Properties
 Within the View tab, deactivate Visualisation and Behavior \(\square \) Display View Frame

 Note: In fact, the View Frames do not plot, and can optionally remain displayed - since they are the most efficient means of repositioning a View.

8. In the Top view:
 Select (using MB3) the 60mm dimension, and select Properties
 Within the Value tab...
 Set the Format Precision (Main value) to 0.001
 Select the Tolerance tab and...
 Set the Main Value to the TOL_NUM2 format
 Set the tolerances Upper value: 0.003, Lower value: -0.002,
 Select OK

 To enable movement of the dimension value only along the dimension line...
 Select Tools \(+ \) Options... \(+ \) Mechanical Design \(+ \) Drafting and the Manipulators tab
 Activate Move value: during Modification and select OK
 Select the dimension and then the arrows symbol to move the value vertically upwards

 Select (using MB3) the 20mm dimension, and select Properties
 Select the Dimension Texts tab and enter (Varies) below the Main Value
 Select OK
6. Drawing Generation (continued)

9. **Double-click the Top View** (in the specification tree) to underline this view as the current/active view to receive new geometry

Select **Text**: and select a location
Enter 2 lines of text in the **Text Editor** window
Select **OK**
Optionally relocate the text, and select and relocate the 60mm dimension

Note: The extent of Dimension Leader Lines can be individually adjusted by first selecting the dimension, and then **Ctrl-selecting** and dragging the square symbol at the end of the leader line to be modified. Alternatively, **double-click** the square symbol to enable a numeric value for the Blanking to be specified.

Select **Geometrical Tolerance:** (located with the **Datum Feature:** icon)
Select the vertical line as reference geometry

Note: Optionally hold the **Ctrl** key to create **vertical text**...

Select a location
Change the **Tolerance Feature modifier** symbol to \(\text{\textbullet} \)
Enter a **Tolerance Value** of \(.01 \)
Optionally insert a Tolerance Value symbol
Enter \(A \) as the Datum Element Reference character, and then select **OK**

Select **Datum Feature:** \(\text{\textbullet} \), select the reference line, the location, and select **OK**

10. Select **File + Save As...** to save the CATDrawing as **Crankshaft_dwg**
7. Simple Modifications

1. Edit existing geometry

Select **Window + 1. Crankshaft.CATPart** (which activates the **Part Design** workbench)

Select **Sketch.1** (from the specification tree) and then **Sketcher**: (or vice-versa)

Select and **Delete** the left-hand semicircle and the vertical dimension

Double-click Constraint: and create the dimension for the right-hand semicircle

Select each horizontal line and use **MB3** to swap the dimension for **Horizontal**

2. Create new geometry

Select **Circle:** to create a circle **concentric** with the right-hand semicircle

Select **Line:** to create a line above the common centre point **at approximately 45°**

Select **Symmetry:** and the line (of symmetry) at the axis to mirror the angled line

3. Add fillets and dimensions

Double-click Corner: to define the 4 fillet curves approximately as shown

Double-click each radius dimension **value**, and enter the required value of **15mm**

Double-click Constraint: to dimension the circle centre point to the angled line

Create an angle dimension from the horizontal line at the axis to the angled line

Create a radius dimension to the left-hand circular arc

Double-click each dimension value, and enter the required values, as shown

(Left hand arc radius **90mm**, line to be at **45°** and offset by **5mm** from semicircle centre)

Select **Exit:** and note that the solid is updated to take account of the new profile

Select **File + Close** and **Yes** to save the changes made to the **Crankshaft** Part

(The **Crankshaft Drawing** becomes the current document, and the **Drafting** workbench is automatically activated)
7. Simple Modifications (continued)

4. Update and add to existing drawing

- Select Update: which updates the view geometry
- Select and relocate the existing annotation (and delete any invalid dimensions)

Optionally select Dimension: to define additional annotation...

For example, when creating a 45° angle dimension between 2 selected lines...

MB3 can change a proposed type of dimension to be created (from Distance to Angle)

Similarly MB3 can change the Angle sector to generate 45° (rather than 135°)

Note: Holding Shift-Ctrl can also be used to switch the proposed angle between 45 and 135° as the cursor is moved between quadrants

5. Add isometric view displaying Part in assembly

- Select Open: and Engine_assy

Note: that the modifications to the Crankshaft Part are automatically reflected

- Select Window + Tile Horizontally to display both Engine_assy and Crankshaft windows
- Select the Crankshaft_dwg Document window
- Select Isometric View: the Block Part, and then the proposed view
- Remove the view frame, and change the view title text to match the existing view texts

Select the window icon to close the Engine_assy and Crankshaft_dwg documents, selecting Yes in response to the "Close - Do you want to save the changes you made to Crankshaft_dwg?" warning message
This example has introduced the Part Design, Assembly Design and Drafting modules with 3 simplified engine components, which were assembled, animated and then modified to show how a drawing sheet of views reflects changes to the master 3D geometry.

You will have noticed that procedures are explained from first principles, illustrating both good methodology and also the assumptions made by the modeling process.

If you have previously encountered official explanations, such as... “The resulting geometry is backward the generative one” “This method realize a breakout view on the view given as parameter” or “It is welcome to catch an entity very precisely” then you should already appreciate the clear concise English of a CAD/CAM Partnership User Guide, which uniquely compliments and clarifies the on-line documentation provided as standard.

Meanwhile some overview pages which follow (extracted from the CATIA V5 Introduction User Guide), give you some idea of the additional examples...

A suspension bracket example introduces ‘Bodies’, the ‘Specification tree’ and the use of ‘Boolean’ and fillet operations to define complex topology.

A handbrake model is constructed to illustrate parameterised sketching and the use of variable fillets and the shell operation in the definition of thin plate parts.

The original engine assembly is extended to illustrate the duplication of Parts within a master Part and of components within an assembly, the effects of modifications, and the concept and management of ‘External references’.

Other examples introduce Patterns, using Catalogs and working with Version 4 data.

The complete CATIA V5 Introduction User Guide forms the basis for a proven and effective 5-day course. In fact, instead of merely providing nominal course material, the illustrated worked examples format of CAD/CAM Partnership User Guides is specifically intended to be a useful source for future reference, which is vital considering the vast range of functions and options provided by CATIA V5, and that not everybody will use CATIA on a daily basis.

If you are interested in learning more about CATIA V5, then an overview of some of the other CAD/CAM Partnership CATIA User Guides is also included.
Notes:

- Lines A and B are **perpendicular**
- Lines A and C, and the sides of the 20mm slot, are **parallel**
- The 10mm diameter **holes** are **concentric** with the outer profile fillet curves
- The centre of the lower left hole is to be the datum, i.e. a **fixed point**

Approach:

Use the **Profile** option to create the basic shape out of **line segments**. Although the Profile option can also create integral fillet curves, it is much easier and more efficient to add fillets later and thereby also implicitly have defined all the required relimitation, tangency and dimensional constraints. The Profile option is also more efficient than the Line option in creating a contiguous sequence of lines.

Both the slot and hole features will be created as **inner profiles**, since their definition must include reference to the outer profile, and they are all through holes.

Comments:

The Sketch with dimensional and geometric constraints approach adopted by CATIA Version 5 may sometimes appear more involved than simple (isolated) trimmed lines and curves. However, any subsequent **modifications** can be infinitely **more simple and powerful**.
Sketcher Profiles

Handbrake Profiles

Notes: All radii are 12mm unless shown otherwise.
The 75 and 40mm distance dimensions are perpendicular.
There are two profiles which share some common geometry.
Should the main (10mm depth) profile subsequently be modified, then it is expected that the secondary (2mm plate) profile should adjust accordingly.

Approach: The Profile: option will again be used to create the basic shape out of line segments, but will also incorporate the Tangent Arc: and the (non-tangent) Three Point Arc: options as required.

In this example, as many of the known dimensions as possible will be specified as the profile is constructed.

Note that the creation of a new 'Body': is required to logically separate the solid geometry of the 2mm plate - to facilitate subsequent additions to the main (10mm thick) solid Body, including a 'Shell' operation which must not include (or be affected by) the 2mm plate solid.

Comments: The ability to specify known values, such as coordinates, a length, a radius and/or an angle, during the creation of a profile in the Sketcher is very powerful.
4. Prismatic Parts

1. Planar Support Bracket

Notes: The specified dimensions will be used, where possible, to constrain and dimension the geometry. These same dimensions should then be generated by the Generative Drafting module if automatic dimensioning of the views from the part is requested.

The 24x20mm cutout is assumed to be centred within the face in the front view.

Approach: The Part is largely defined by its side elevation, which can define a Pad:

The top cutouts will be defined in the rear 45° face plane, using Project 3D elements: to create reference geometry from existing edges.

Comments: Prismatic parts are particularly suited for modeling in solids. In this simple example, it is unnecessary to consider logically grouping the features in the specification tree.

Powerful Part modification options are available due to the implicitly intelligent model resulting from the use of reference elements and the specification of Pocket: limits.
Prismatic Parts

2. Suspension Bracket

Objective: To illustrate how quite complex topology can be simply created by using the 'Boolean' operations - particularly the **intersection** of two solids.

Since many sketch profile dimensions are provided, the opportunity is also taken to further evaluate the effectiveness of automatically generating dimensions.

Approach: Here again the creation of a new 'Body' is required to logically separate the solid geometry as it is created - only then is it possible to **specify each of both solids** (to be added, subtracted, or intersected), otherwise, by default, the selected solid will be Booleaned only with the solid of the PartBody.

A **'cut and paste'** methodology is introduced to as an alternative method of defining (initially) identical dimensional constraint **parameter values**.

Comments: As with all solid modeling software, careful consideration has to be given to the sequence in which the geometry is generated and how it is combined.

The Fillet function copes well where the geometry extends to the edges of the base plate, although a warning message may be displayed.

It is still more productive to manually define individual annotation dimensions, of the required format, in the appropriate view, and at the most aesthetic and clear location, rather than use the options which automatically generate dimensions.
3. Handbrake Plate

Objective: Primarily to illustrate the use of the **Shell** operation in the modeling of **thin plate parts**, which typically incorporate features such as swages, as shown by the sections above.

Approach: The complete outer form of the plate is modeled - leaving the Shell operation to the last possible moment. This approach can generate quite complex thin plate sections, especially if the incorporated features are filleted.

A **Variable Radius Fillet** will be used to fillet the 10mm plate profile, starting and ending with R10, and blending with R6 to accommodate the 2mm thick plate profile.

The **Union Trim** operation is also introduced to illustrate how a more advanced 'Boolean' can both add and subtract solid at the same time, thereby producing, for example, a 'boss and a through hole' as a single feature. *(Note that a Union Trim may not be available within a P1 software configuration)*

Comments: Formed plates might not immediately be considered as 'prismatic parts', but planned use of the powerful Shell operation can efficiently generate quite complex geometry.
4. Patterns of Objects

Objective: To generate a tread pattern on a plate to illustrate the use of Rectangular Pattern: \[\square\] and User Pattern: \[\bullet\] to generate regular and varying repetitions of specified geometry.

Approach: Advantage is taken of the symmetry within the tread geometry to illustrate how a profile can be almost completely defined by geometrical Constraints.

Rectangular Pattern: \[\square\] is used to define a regular 30x50mm grid of the tread geometry, referencing the orthogonal sides of the plate to define the directions.

The plate with the pattern of treads is 'shelled' with a thickness of 2mm.

The Rectangular Pattern is then replaced by a User Pattern: \[\bullet\], which requires a Sketch of Points to define the instances of the thread geometry.

Comments: Should the Pattern command icon be activated before the selection of geometry, (typically the methodology elsewhere), then options may be restricted.

It is important to consider the 'anchor point' of the geometry to be duplicated, since the default may not be appropriate.

For a User Pattern: \[\bullet\], then care must also be taken not to superimpose a copy of the geometry being patterned at its original location.

Note that a select Circular Pattern: \[\circ\] option is also available.
5. **Sports Car Wheel**

Objective: To create simple models of sports car wheels to illustrate the further application of Patterns and the retrieval of standard Parts from the sample Catalogs, and to provide an example of Sub-assemblies of Parts in turn used as components within a main assembly document.

Comments: The datum/origin of a Hole based on a non-planar face may not obviously relate to that of the Part, and the orientation of the axis of a hole defaults to be normal to the supporting face, (which is not appropriate in this example and will need to be modified).

Use of the standard Catalogs requires that the document search order settings include the search of all sub-directories, in addition to the specific search of 'Catalog & startup documents' option.

Care needs to be taken when a Component is 'mirrored'. In this example, an opposing instance of a wheel is of identical Part geometry, and not 'handed' geometry (which would have to be manufactured separately). Therefore the wheel geometry is instead rotated about a vertical line of symmetry. This clarification would also be apparent in a bill of materials/list of components used.

Both **Snap** and the parameters window of the **Compass** provide alternative methods to accurately reposition Components within an assembly, and are particularly efficient where a permanent record of Constraints is not required.
5. Draughting and Plotting

Draughting Basics

Objective: To introduce the **Background** and **Working Views** modes which are used to keep the **Sheet frame/title block** geometry separate from that of generated views.

To insert a **company logo** image into the title block, and to create a **new sheet**, within the same CATDrawing document, using the same frame/title block.

To define a **Section View**.

To introduce **'Draw Details'**, which are first created in a **Detail Sheet**, and can then be repeated as a **'Dittos'** on a Drawing Sheet.

To provide an overview of **plotting** concepts.

Comment: Draw Dittos can not be referenced as geometry, by a dimension for example, and are therefore of limited use.

Sample automatic sheet frame and title block programs are provided by default, as specified by the **Tools + Options... + Mechanical Design + Drafting Layout** tab, e.g. the `E:\CatiaV5\intel_a\VBScript\frameTitleBlock` directory.
7. Miscellaneous

8. The CATIA V5 Advanced User Guide

Following on from this CATIA V5 Introduction, the CATIA V5 Advanced User Guide provides additional genuine independent insight and easy to follow step-by-step illustrated worked examples, and also forms the basis for a 5-day course.

Describes more advanced Sketch, Part Design, and Drafting concepts, and introduces new topics, such as Assembly Analysis, Interference and Sectioning, Bills of Materials, Surfaces, Layers, Formulas and Design Tables, and 'PowerCopies'.

The main examples include the generation and modification of a Pressure Chest Casing assembly, a complex Engine Bearing Arm which includes twisting and drafted pockets, and the surfacing and modification of a simplified concept car body, as illustrated above.

The CAD/CAM Partnership CATIA V5 Advanced User Guide answers, for example...

What happens when the Sketch Support Plane is modified?

How are Drawing Number texts created (for example, both in the title block and also top left of the sheet) so that they remain identical?

How can I create an exploded view of an assembly which will automatically reflect changes to the constituent Components?

What are the procedures to create relationships between dimension values?

How can I place an Excel spreadsheet on a drawing to redefine multiple dimensions and other values, according to a specified member of a family of parts?

What are 'DLNames' and what is the purpose of file Search Orders?

How do I dynamically review a designated cross-sectional area of a Part, while reducing the pocket wall thickness to meet a specified weight limit?

What are Catalog Text Templates, and how can they be used to annotate drawings?

This User Guide forms the basis for a 2-day course and assumes no prior knowledge. Standard sample data is used to illustrate the definition and display of existing components within a product structure, and the different modes of navigation.

The DMU Optimizer can further improve the display response, and so examples are provided of the Silhouette:, Wrapping: and Simplification: options.

The DMU Navigator is used to add 2D and 3D annotation, and to create 'Scenes' of an alternative configuration, such as an exploded presentation. Examples are also provided of Spatial Queries and Measurements, the comparison of drawings within the 2D Workshop, and also the generation of animated presentations ('Replays' and video files) via Camera Tracks.

DMU Space Analysis is used to illustrate the Distance and Band (proximity) Analysis of components, the combination of Sectioning and Interference Analysis, and the visual comparison of different versions of (3D) components.

The chapter explaining the DMU Fitting Simulator provides examples of creating and modifying the assembly paths ('Tracks') of components, creating a 'Shuttle', and how to edit and subsequently annotate a 'Sequence'. Other examples illustrate Clash Detection during the simulation of an assembly, displaying a Gantt chart, and how to define an 'Experiment'.

The principles of the DMU Kinematics Simulator are explained, together with a table of Joint types and their 'Degrees of Freedom'. Examples illustrate the creation of Joints via Constraints, and the definition of Command Laws and kinematic Analysis.
2. A Review of the Examples

At this stage, your working directory, (for example, E:\Catadata\My_work), should contain at least 2 CATDrawing documents, and the following CATPart and CATProduct documents...

Block.CATPart Crankshaft.CATPart Piston.CATPart Conrod.CATPart

Engine_assy.CATProduct Plate.CATPart Planar_Bracket.CATPart Suspension_Bracket.C

Handbrake.CATPart Plate2.CATPart Car_wheel_assy and Car_wheels CATProducts

Crankbay/Crankshaft4.CATPart Block4.CATPart Engine_assy4.CATProduct
Summary

2. A Review of Examples (continued)

<table>
<thead>
<tr>
<th>Page</th>
<th>Example</th>
<th>Introduces/illustrates…</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Block, Crankshaft, Piston and Conrod</td>
<td>Simple Sketches and Part creation, Modifying a Part</td>
</tr>
<tr>
<td>2.10</td>
<td>Engineassy</td>
<td>Assembly of Components and defining Constraints</td>
</tr>
<tr>
<td>6.5</td>
<td>Engineassy</td>
<td>Creating and managing External References</td>
</tr>
<tr>
<td>2.13</td>
<td>Crankshaft_dwg</td>
<td>Creating a new drawing sheet and defining views, Defining dimensions and adding annotation</td>
</tr>
<tr>
<td>5.2</td>
<td></td>
<td>Creating a sheet frame and title block with a company logo</td>
</tr>
<tr>
<td>3.1</td>
<td>Plate</td>
<td>Defining geometrical constraints within a Sketch</td>
</tr>
<tr>
<td>4.1</td>
<td>Planar_Bracket</td>
<td>Creating a prismatic solid with non-orthogonal faces</td>
</tr>
<tr>
<td>4.7</td>
<td>Suspension_Bracket</td>
<td>Creating a NewBody and managing the Specification tree, 'Boolean' operations, particularly the use of Intersect, Defining fillets, and 'automatic dimensioning' of draw views</td>
</tr>
<tr>
<td>3.7</td>
<td>Handbrake</td>
<td>Defining known dimensions as the Sketch is constructed, Variable radius Fillets, and the Union Trim operation</td>
</tr>
<tr>
<td>4.15</td>
<td></td>
<td>Using the Shell operation to define thin plate parts, The concept of the In Work Object</td>
</tr>
<tr>
<td>4.24</td>
<td>Plate2</td>
<td>Rectangular and user defined Patterns of objects</td>
</tr>
<tr>
<td>4.30</td>
<td>Car_wheel</td>
<td>Circular Patterns, and Holes in non-planar faces</td>
</tr>
<tr>
<td>4.33</td>
<td>Car_wheel_assy</td>
<td>Retrieving a standard Part from a Catalog, Positioning a Part in an assembly with respect to mating Parts</td>
</tr>
<tr>
<td>4.34</td>
<td>Car_wheels</td>
<td>Moving a (sub-assembly) component within an assembly, Creating symmetrical instances of components within an assembly</td>
</tr>
<tr>
<td>6.10</td>
<td>Crankshaft4</td>
<td>Duplicating Parts within a master Part</td>
</tr>
<tr>
<td>6.12</td>
<td>Engine_assy4</td>
<td>Duplicating Components within an assembly, Changing referenced Parts</td>
</tr>
</tbody>
</table>
Index

A
Add or Assemble, 4-22
Align View, 5-11
Apply Material, 2-4
Arc, 6-4
Arc Starting With Limits, 6-4
Area Fill, 5-8
Assemble or Union Trim, 4-22
Automatic Recovery, 1-2, 8-4

B
Background (Mode/View), 5-2, 5-6
Bitmap Image, 5-4
Blend Curves, 7-10
Body, 3-7, 3-10

C
Catalogs, 4-32
CATSettings, 8-1
CATV4ToV5Migration, 7-6
Center Line, 5-9
Change Control, 6-1
Change Sketch Support, 4-31, 6-9
Circle Using Coordinates, 2-7
Circular Pattern, 4-31
Coincidence Constraint, 2-11
Compass, 4-34, 6-14, 6-16, 7-13
Compass Reset, 7-10
Concentric Holes, 4-23
Connect Curves, 7-10
Constraints Defined in Dialog Box, 5-3
Copy Object Format, 5-5
Copy Radius, 4-8
Create Symmetry on Component, 4-34
Ctrl Key, 8-1
Current Element, 2-20, 8-1
Cut Part by Sketch Plane, 6-2
Cylindrical Elongated Hole, 4-16

D
Datum Feature, 2-17
Define Multi Instantiation, 4-34, 6-12
Detail Sheet, 5-8
Dimensions Analysis, 4-14
Dimension Colour, 5-10
Dimension Creation, 2-19, 4-14, 8-5
Dimension Generation, 2-15, 4-14
Dimension Leader Lines, 2-17
Dimension Line-Up, 2-15
Dimension Manipulators, 2-16, 8-5
Dimensions in Isometric Views, 5-10
Directory Search, 1-3, 8-6
Display mode, 2-10
Ditto Elements, 5-9
Document Management, 7-11
Document Properties, 7-10
Document Relationships, 5-10, 7-8
Documentation Location, 1-2, 7-2, 8-4
Drafting Modules, 5-11

E
Edge Fillet, 4-13
Edit + Paste Special, 6-10
Edit + Search, 4-27, 7-7
Index

<table>
<thead>
<tr>
<th>F</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element Positioning, 5-9</td>
<td>Hatching Patterns, 5-8</td>
</tr>
<tr>
<td>Equivalent Dimensions, 3-11</td>
<td>Hidden Lines, 2-14</td>
</tr>
<tr>
<td>Existing Component, 2-10</td>
<td>Holes or Pockets, 4-23</td>
</tr>
<tr>
<td>Existing Component with Positioning, 2-10</td>
<td></td>
</tr>
<tr>
<td>External References, 6-6, 7-3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generating Dimensions, 2-15, 4-14</td>
<td></td>
</tr>
<tr>
<td>Generating Numbers, 7-2</td>
<td></td>
</tr>
<tr>
<td>Generative Drafting, 5-10</td>
<td></td>
</tr>
<tr>
<td>Geometrical Constraints, 2-3</td>
<td></td>
</tr>
<tr>
<td>Geometrical Set, 4-21</td>
<td></td>
</tr>
<tr>
<td>Geometrical Tolerance, 2-17</td>
<td></td>
</tr>
<tr>
<td>Geometry Dimmed/Unselectable, 7-11</td>
<td></td>
</tr>
<tr>
<td>Grids, 8-5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J, K, L</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental Backup, 8-4</td>
<td></td>
</tr>
<tr>
<td>In Work Object, 4-21</td>
<td></td>
</tr>
<tr>
<td>Insert Body, 4-10, 4-20</td>
<td></td>
</tr>
<tr>
<td>Instantiate Detail, 5-9</td>
<td></td>
</tr>
<tr>
<td>Interactive Drafting, 5-10</td>
<td></td>
</tr>
<tr>
<td>Intersect, 4-12</td>
<td></td>
</tr>
<tr>
<td>Isometric View, 2-14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M, N</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Manipulation, 2-11</td>
<td></td>
</tr>
<tr>
<td>Manual Additions, 5-11</td>
<td></td>
</tr>
<tr>
<td>Manual Part Number Input, 8-6</td>
<td></td>
</tr>
<tr>
<td>Mass Properties, 2-4</td>
<td></td>
</tr>
<tr>
<td>Measure Inertia, 7-5</td>
<td></td>
</tr>
<tr>
<td>MigrationV4ToV5, 7-6</td>
<td></td>
</tr>
<tr>
<td>Mirror, 4-210</td>
<td></td>
</tr>
<tr>
<td>Moving Components, 8-4</td>
<td></td>
</tr>
<tr>
<td>Moving Geometry, 6-16</td>
<td></td>
</tr>
<tr>
<td>Multi-Pad, 2-20</td>
<td></td>
</tr>
</tbody>
</table>
Index

O
Oblong, 2-8
Offset, 5-3, 5-5
Offset Section View, 5-7
On-line Help, 7-1
Open Message, 7-4
Open Profile, 3-10
Open the Pointed Document, 6-15

P
Page Setup, 5-2, 5-14
Parameter Tolerance ± Display, 2-3
Part Number Specification, 8-6
Paste Special, 6-10
Plane, 4-21
Print settings, 5-13
Project 3D elements, 3-10
Projection Method, 4-14

Q
Quick Detail Views, 5-11
Quick Trim, 3-6, 5-5

R
Reconnecting Constraints, 6-6
Rectangular Pattern, 4-26
Reference Dimensions, 4-3
Replace Component, 6-12
Reuse Pattern, 4-33, 6-12
Roll File, 1-2
Save As Warning Message, 7-9
Save Management, 4-33
Save Warning Message, 7-8
Scanning a Solid, 4-21
Searching Documentation, 7-7
Searching for Elements, 4-27
Search, 4-27, 7-7
Search Order, 1-3, 4-32
Selection Trap, 4-27
Send To, 7-4
Set Relative (View) Position, 5-11
Shading Display Mode, 2-10, 8-5
Shift key, 8-1
Sketch Analysis, 6-5
Sketch Errors, 7-9
Sketch Plane Definition, 4-21, 4-31
Sketch Plane Rotation, 2-9, 8-5
Sketcher Grid, 1-2, 8-5
Sketch Solving Status, 6-5, 7-9
Sketch Support Plane, 6-9, 4-31
Snap, 4-33
Solid Combine, 4-13
Specification Checker, 7-6
Specification Tree Icons, 7-12
Spline, 6-2, 7-10
Spline Tangency, 6-2
Startup Options, 8-1
Stiffener, 7-13
Style, 5-4
Symmetry Constraint, 4-6
Symmetry (Copy by Mirroring), 2-18
Synchronizing References, 6-7

© The CAD/CAM Partnership, 2001

Index-3
Index

<table>
<thead>
<tr>
<th>T</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Texts in Wrong View, 5-12</td>
<td>Variable Radius Fillet, 4-17</td>
</tr>
<tr>
<td>Thin Solids, 7-13</td>
<td>Vertical Rotation, 7-13</td>
</tr>
<tr>
<td>Toolbar Customisation, 8-6</td>
<td>View Axis, 2-14, 8-5</td>
</tr>
<tr>
<td>Tools Menu, 2-8, 5-3, 8-6</td>
<td>View Frame, 2-16</td>
</tr>
<tr>
<td>Translation, 6-16</td>
<td>View Copying, 5-11</td>
</tr>
<tr>
<td>Tree Zoom, 7-11</td>
<td>View Location, 5-6, 5-12</td>
</tr>
<tr>
<td>Tritangent Fillet, 6-5</td>
<td>View Scale, 2-13, 8-5</td>
</tr>
<tr>
<td></td>
<td>View Selection, 5-12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>U</th>
<th>W, X, Y, Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union Trim, 4-20, 4-22</td>
<td>Workbench Selection, 1-2</td>
</tr>
<tr>
<td>Units, 1-2</td>
<td></td>
</tr>
<tr>
<td>Update Cycle Error, 4-28, 6-8</td>
<td></td>
</tr>
<tr>
<td>Update Diagnosis, 6-5, 7-9</td>
<td></td>
</tr>
<tr>
<td>Update Options, 6-2</td>
<td></td>
</tr>
<tr>
<td>User Pattern, 4-28</td>
<td></td>
</tr>
</tbody>
</table>

Feedback

As part of our commitment to the quality and effectiveness of our **CATIA V5 User Guides**, we welcome any queries or comments that you may wish to email to...

info@cadcam.co.uk